Primal-Dual methods for sparse constrained matrix completion

نویسندگان

  • Yu Xin
  • Tommi S. Jaakkola
چکیده

We develop scalable algorithms for regular and non-negative matrix completion. In particular, we base the methods on trace-norm regularization that induces a low rank predicted matrix. The regularization problem is solved via a constraint generation method that explicitly maintains a sparse dual and the corresponding low rank primal solution. We provide a new dual block coordinate descent algorithm for solving the dual problem with a few spectral constraints. Empirical results illustrate the effectiveness of our method in comparison to recently proposed alternatives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...

متن کامل

Exploiting Sparsity in Semide nite Programming via Matrix Completion I : General Framework ?

A critical disadvantage of primal-dual interior-point methods against dual interior-point methods for large scale SDPs (semidenite programs) has been that the primal positive semidenite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidenite matrix completion, this article proposes a general method of exp...

متن کامل

Algorithms for Matrix Completion by Yu Xin

We consider collaborative filtering methods for matrix completion. A typical approach is to find a low rank matrix that matches the observed ratings. However, the corresponding problem has local optima. In this thesis, we study two approaches to remedy this issue: reference vector method and trace norm regularization. The reference vector method explicitly constructs user and item features base...

متن کامل

A Fully Sparse Implementation of a Primal-Dual Interior-Point Potential Reduction Method for Semidefinite Programming

In this paper, we show a way to exploit sparsity in the problem data in a primal-dual potential reduction method for solving a class of semidefinite programs. When the problem data is sparse, the dual variable is also sparse, but the primal one is not. To avoid working with the dense primal variable, we apply Fukuda et al.’s theory of partial matrix completion and work with partial matrices ins...

متن کامل

Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012